Acetaminophen and NSAID Use in Athletes

Team Physician Course Feb 2013

Heather Gillespie, MD, MPH
Assistant Professor, UCLA
Team Physician, UCLA Athletics

Objectives
• Review normal healing process and types of injuries treated with these medications
• Review risks and benefits of acetaminophen use in athletes
• Review risks and benefits of NSAID use in athletes

Types of Injuries
• Acute
 – Sprain
 – Strain
• Chronic
 – Overuse, overload
• Fractures
 – Acute/Stress

Injury → Inflammation

Acute Injuries
• What happens when tissues are acutely injured?
How Does the Body Heal? Achieve Homeostasis?

Healing Process

- Inflammatory phase (injury to 48-72 hrs)
 - Remove debris, damaged tissue.
 - Recruit cytokines and other growth factors.
 - May also be integral to muscle repair and adaptation.

- Proliferative phase (48 hrs – 6 weeks)
 - Proteolytic degradation of damaged tissue facilitated by protein-rich exudate resulting from vascular permeability.
 - Proteolysis attracts neutrophils, lymphocytes, macrophages.
 - Fibroblasts form new extracellular matrix.

- Maturation phase (6 weeks – months)
 - New extracellular matrix.
 - Functional tissue is laid down.

 - Each phase is dependent upon the preceding phase!

Inflammation

- **Good or Evil??**

- Inflammation is a necessary component in the healing process!

- "inflammation can occur without healing, but healing cannot occur without inflammation."
 - Leadbetter

Chronic/Overuse

- **Tendinitis**: "itis" = inflammatory process
 - these injuries may not be inflammatory in nature!

- **Tendinosis**: “tendon degeneration”

- **Tendinopathy**: “nonspecific tendon pathology”

Tendinopathy

- Theoretical Model of Tendinosis cycle:

 - Adequate Repair (Adaptation) → Increased Demand on Tendon → Inadequate Repair (inadequate collagen and matrix production) → Tendinosis Cycle → Further reduction in collagen and matrix production → Tenocyte Death

Acetaminophen and NSAIDs

- What do they have in Common??
 - Analgesic
 - Antipyretic
Mechanism of Action

• NSAID
 – COX inhibitor (block prostaglandin formation)

• Acetaminophen
 – “central acting”
 – Debate on mechanism of action
 – May have weak COX inhibition

Acetaminophen

• N-acetyl-p-aminophenol (APAP)
• First marketed as children’s elixir in US in 1955
• Approx 184 OTC and Rx APAP avail
• Preg risk factor B
• Safe in breastfeeding

Acetaminophen Risks

• Liver Toxicity
 – Thousands of ER visits/yr
 – Overdose is biggest issue
 • Acute liver failure (hepatic necrosis)
 • Btw 2000-2004, 1600 cases of acute liver failure in US/yr.
 – 86% attributed to intentional and unintentional APAP overdose

Acetaminophen Risks

• FDA “Boxed Warning”
 – potential for severe liver injury

• “Warning”
 – potential for allergic reactions (e.g., swelling of the face, mouth, and throat, difficulty breathing, itching, or rash)

• Increased liver toxicity risk with consumption of 3 or more alcoholic drinks per day with APAP use

Acetaminophen Risks

• January 2011:
 – FDA limited strength of acetaminophen in prescription drug products to 325 mg per tablet/capsule

• >4g/day = potentially toxic
• Advised max daily dose = 3g/day
NSAIDs

• Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)
 – Analgesic
 – Anti-inflammatory
 – Antipyretic

• 17,000,000 Americans use various NSAIDs on a daily basis
 – One of most commonly used class of drugs in the world

COX-1 enzyme

• Homeostatic (constitutive enzyme; responsible for regulation of normal cell activity)

• Form prostaglandins for:
 – Protection of gastric mucosa
 – Platelet activation
 – Macrophage differentiation
 – Maintenance of some renal functions

COX 2 enzyme

• Inducible (Pathologic)

• Form prostaglandins for:
 – Inflammation
 – Pain
 – Fever

 • AND...
 – Bone formation
 – Tissue repair after injury (collagen synthesis)
 – Physiologic – reproduction and renal function
 – Healing of H. Pylori gastric ulcers

NSAIDs GI RISK

• Symptoms: dyspepsia, nausea, heartburn, constipation

• G-I bleeding: (dose-related)
 – Direct effect/irritation
 – Systemic (post-absorptive) prostaglandin inhibition of endogenous mucosal protection (cytoprotective effect)

NSAIDs GI RISK

• GI bleeding secondary to NSAID use is the 15th leading cause of death in the United States

• > 100,000 hospitalizations annually
 – 5-10% mortality rate in those hospitalized for NSAID-induced GI bleed

• Increased risk
 – Increased age (> 65), simultaneous use with another NSAID, alcohol use, corticosteroid use, anticoagulant use
NSAIDs GI RISK

- After 7 day use:
 - 6.7% incidence gastric ulceration
 - 1.4% duodenal ulceration

- COX-2s safer?
 - Compared to placebo, COX-2s still have 5x risk of bleeding

NSAID GU RISK

- Risk of acute renal failure
- 5% who use NSAIDs experience renal complications
 - Prostaglandin-induced decreased renal blood flow
 - Complicates prolonged exercise/heat-induced hypovolemia
 - Inc risk of hyponatremia
 - Electrolyte imbalance (prostaglandin inhibition)

Hepatic Risk

- Unusual (< 5/100,000 users per year)
- Combination with other hepatotoxic drugs increases risk
 - i.e. acetaminophen

Cardiac Risk

- May accelerate CHF in at-risk individuals
- Selective inhibition of antithrombotic prostaglandins (COX 2) might increase cardiovascular events??
 - Mechanism:
 - increased vascular resistance
 - interference with actions of diuretics, ACE inhibitors

Cardiac Risk

- Celecoxib
 - 400 mg twice daily linked to 3.4-fold increase in CV death, MI, CVA
 - 200 mg twice daily \rightarrow 2.4-fold increase
- CV risk greatest after 18 months of use
 - *New data: Even shorter duration has risk!*
Bleeding Risk

- Interferes with platelet function/aggregation

Specific Concern For the Sports Medicine Physician:

- Delayed Healing??

Animal Studies: Sprains

 - Results of animal studies show increased mechanical strength during healing, presumably due to increased collagen cross-linking.
 - Once healed, however, there were no differences between placebo and NSAID-treated ligaments.

 - Evaluated effects of COX-2 inhibitor (Celecoxib)
 - Inhibited early Healing of incised rat MCLs
 - Celecoxib-treated injured ligaments were found to have a 32% lower load to failure than untreated/injured ligaments.
 - No effect on unrelated, healthy ligaments.
 - Contradicted 1988 study.

- Negative effect on ligaments is more profound with COX-2 inhibitors

Animal Studies: Sprains

 - 7 groups: piroxicam, naproxen, rofecoxib, butorphanol, 2 doses of acetaminophen, and control
 - Mechanical testing on day 14 post op
 - Piroxicam group demonstrated significantly greater load to failure (27%) compared with the control
 - No sig difference with opiate analgesics, acetaminophen, and cyclooxygenase-2 inhibitors

NSAIDs and Sprains

- *A randomized controlled trial of piroxicam in the management of acute ankle sprain in Australian Regular Army recruits.* Slatyer MA, et al. AISM 1997
 - 364 army recruits with ankle sprains
 - Randomized to piroxicam or placebo
 - Piroxicam group: less pain & able to resume training faster
 - However some evidence of local abnormalities: instability and reduced ROM

- Unknown long term effect on tissue healing and structure

NSAIDs and Sprains

- Summary:
 - Contradicting results:
 - Piroxicam: stimulate collagen synthesis and early strength?
 - Some evidence of short term decreased ligament healing
 - Detrimental effect on ligaments is more profound with COX-2 inhibitors
 - Variations in cyclooxygenase enzyme selectivity by different drugs?
 - Variation in analgesic properties?
 - Unknown long term effect on tissue healing and structure
 - Animal Studies = Clinical relevance?
 - Inflammation is a necessary component in the healing process!
Animal Studies: Strains

 - Transected and sutured rat patellar tendons
 - Mechanical testing and biochemical analysis at 14 d post op
 - NSAIDs (except ibuprofen) had decreased failure loads and increased failures of suture.
 - Acetaminophen had no effect on healing strength
 - Biomechanical properties paralleled closely with total collagen content at the injury site
- Suggests agents may alter healing strength by decreasing collagen content

Strains

- NSAIDs may...
 - Delay and possibly decrease inflammation
 - Inc contractile force in early post-injury state

But

... prostaglandins have a stimulant effect on skeletal muscle protein synthesis...

- Delayed muscle regeneration?
- Dec collagen synthesis?
- Delayed effect on tissue level healing?

Fracture Healing

- Prostaglandins important in the regulation of osteoblast and osteoclast functions
 - Important for bone formation, healing, and remodeling
 - Inhibition of prostaglandin production retards bone formation

- NSAIDs used to prevent ectopic bone formation (heterotopic ossification)
 - Documented in controlled clinical trials

Fracture Healing

- Bone fracture healing
 - Oral application of diclofenac significantly delayed fracture healing in rats*
 - Animal studies show inhibition or deficiency of COX-2 impairs the bone healing process
 - Mice with COX-2 knockout gene
 - Reduced endochondral ossification and greater delayed union

- Limited clinical data supports assumption that inhibition of COX-2 by non-selective or COX-2-selective NSAIDs delays fracture healing

NSAIDs and Fracture Healing

- Benefits
 - Pain relief
 - Inhibition of ectopic bone formation

- Risk
 - Non-union
 - Delayed union

NSAIDs in MSK Injuries

- Animal studies show delayed fracture healing and delayed tissue regeneration
- Cox-2 inhibitors have an adverse effect on bone healing and may have an adverse effect on ligament healing

- Further investigation needed to confirm traditional NSAIDs preferable for the healing of collagenous tissues?

- Need for studies on the effects of NSAIDs on clinical level tissue repair
Prophylactic Use?

- Impair normal biofeedback – injury risk
- Impair normal healing response – Collagen synthesis
- Acute GI Risk – GI mucosal damage
- Acute Renal risk – Hyponatremia
- Increased bleeding risk

Summary

- Acute Analgesia is Important in Injury Treatment – Earlier mobilization and return to function
- Consider Risks and Benefits in Acute Injuries – Screen for comorbidities – Further research needed
- Avoid NSAID Use in Fracture Care
- Counsel on Risks of Prophylactic NSAID Use
- Avoid Prolonged NSAID Exposure – GI, Cardiac Risk
- Counsel on proper dosing of APAP – Increase risk of overdose with EtOH

References