Anemia To Blood Doping: Hematological Issues In Athletes

Thomas M. Best, MD, PhD, FACSM
February 10, 2013
I have no commercial, financial, or research relationships or interests within the past 12 months that affect my ability to provide a fair and balanced presentation for the proposed CME activity.
OUTLINE

- Laboratory Evaluation of Anemia
- Sports Anemia (Dilutional Pseudo-Anemia)
- Iron Deficiency Anemia
- Foot Strike Hemolysis
- Sickle Cell Trait
What Is Ideal Hematocrit?

- ~ 40% for a long life?
- ~ 50% to win the big marathon?
- ~ 60% to climb Mt. Everest without an oxygen tank?
- ~ 60% to die from blood doping?
Who Gets Anemia?

- Heavy menses
- Vegetarian
- Calorie cutter
- Breakfast skipper
- Sky-high carb diet
Work up for Anemia

- Detailed history
 - Symptoms of: fatigue, sob, decreasing performance, palpitations, tachycardia, pica
 - GI, urinary bleeding
 - Menstrual history
 - Nutritional practices
 - Training
 - Use of medications
Physical Exam

- Resting bp, pulse, orthostatics
- Skin – pallor, jaundice
- Cardiopulmonary
- Abdominal
- Possibly rectal exam
Laboratory Studies

- Hemoglobin/Hct including MCV, MCH
- Reticulocyte count <2%
- Possible smear – for abnormal cells
- Serum iron, ferritin
- Total iron-binding capacity/transferrin
- LDH, bilirubin, haptoglobin
- Possibly further GI/GU evaluation
- Consider CRP, ESR, TSH, electrophoresis if ruling out other dz
Sports Anemia

- Also called “Dilutional Pseudoanemia”
- Not true anemia
- Increased plasma volume in response to exercise
 - Increase in aldosterone, renin, ANF, vasopressin
 - increased renal retention of water and salts
 - Increase in plasma proteins
 - Increased hydration
Sports Anemia

- Endurance athletes mainly
- Expanded plasma volume
- Dilutes Hgb down 1.0-1.5 g/dl
- In men, most common “anemia”
- Waxes and wanes with training
- Benefit, not a detriment
Iron Deficiency Anemia

- #1 Nutritional Deficiency in U.S.
 - Iron Deficiency ~ 11% of women
 - Iron Deficiency Anemia 1-2% adults
- #1 cause of Anemia in Athletes
 - Up to 12.5% of athletes
- ↓ Dietary intake
- Menstruation
- ↑ Loss from other sources (GI, GU, hemolysis, sweating)
- ↓ Absorption
Iron Deficiency Anemia

- Hg <12 g/dL (36 Hct) Female
- Hg < 14 g/dL (42 Hct) Male
- MCV < 75
 - (if < 60 consider hemoglobinopathy)
- Ferritin <12
- Low Serum Iron w/ High TIBC
- High Hg – think doping/steroids
Iron Deficiency Anemia

- **Stage 1** - “prelatent anemia”
 - Depleted Iron Stores
 - ↓Ferritin NL-TIBC/Iron NL-HCT

- **Stage 2** - “iron-deficient erythropoiesis”
 - above plus ↓Ferritin ↑TIBC ↓IRON, Mild ↓HCT
 - Normocytic to mildly microcytic, mild Hypochromic

- **Stage 3** - overt Microcytic and Hypochromic anemia
 - ↓Ferritin ↑TIBC ↓IRON ↓HCT
Gastrointestinal Hemorrhage in Athletes

- Particularly in distance runners, triathletes
- Following endurance events stool occult positive 13-85%
 - Overt hematochezia was reported in 6%
- Increased blood loss with increased intensity
- Mixed results on increased blood loss with concurrent use of NSAIDs
- Blood loss can be trivial to severe
Gastrointestinal Hemorrhage in Athletes

- **Visceral ischemia** due to decreased splanchic perfusion
- **Gastritis** and **esophagitis** most frequently noted abnormalities on endoscopy – but also cases of small bowel and colonic ischemia
 - Exercising at 70% of VO2 max reduces blood flow to the gastrointestinal tract by 60-70%; more intense exercise may cause reductions in excess of 80% - worsened by dehydration
 - Up and down motion of running appears to be risk factor - ? Direct trauma to viscera
Genitourinary System Losses

- Exercise-induced hematuria
- Typically microscopic
- Usually resolves within a few days of event
- Renal causes
 - Renal vasoconstriction
 - decreased renal plasma flow with damage to nephron
 - direct trauma to GU system
- Intravascular hemolysis causing hemoglobinuria
Iron Deficiency Anemia - Impact on Performance

- Reduction in aerobic capacity, endurance and energetic efficiency due to decreased oxygen delivery
- Correction of anemia with iron supplementation improves performance
- ? No improvement in performance shown with iron supplementation in nonanemic, iron-deficient athletes
Iron Deficiency Anemia - Treatment

- Discuss Dietary consumption
 - Males require 10mg/day, female 15mg/day
 - Heme iron (meats) more bioavailable (10-35%) vs non-heme iron (2-5%)
 - Handouts/Websites - www.fwhc.org/health/iron.htm

- Consider Iron Replacement
 - Stage 1&2?, Stage 3 yes
Iron Replacement
need 150-200mg/day

- Ferrous vs Ferric
 - Ferrous is absorbed better
 - sulfate 325mg(65mg)
 - gluconate 325mg(36mg)
 - Replace w/ palatable forms
 - Increased absorption w/ Vitamin C (Ascorbic Acid)

- GI side effects
 - Take w/ food (but can ↓absorp up to 65%)

- Do not use enteric coated forms (do not dissolve in stomach)

- Drug Interactions (H2 blockers, PPI, tea and coffee tannates, Caffeinated drinks)
Iron Deficiency Anemia - Treatment

- Re-evaluate
 - CBC in 1 month
 - Reticulocytes and MCV increase first
 - If HCT not up despite therapy – consider further evaluation

- Replaced Iron stores complete when Ferritin = 50

- Can take 4-6 months to treat then maintenance therapy
To Prevent Anemia

- Lean red meat
- No coffee at meals
- OJ with breakfast
- Iron cookware
- Mixed meals
- Supplements

Intravascular Hemolysis

- Also called “Foot Strike Hemolysis”
 - Caused by RBC destruction from repeated trauma
- Elevated temperature in muscle, turbulence and acidosis may also be involved

Robinson et al, MSSE 38:480-83, 2006
Foot Strike Hemolysis
Diagnosis

- ↑ Bilirubin
- ↓ Haptoglobin
- ↑ Schistocytes
- Slight ↑ MCV & Reticulocytes
 - Preferential breakdown of older rbcs
- Hemoglobinuria
- Anemia resolves w/ d/c exercise

Foot Strike Hemolysis
Treatment

- Change Shoes
- Change Running Surfaces
- Modification of Training Program

- Search for other causes of hemolysis
 - Drugs (ABX, INH)
 - Acute Illnesses (Mycoplasma, Mono, Sepsis, Viral)
 - Chronic Illnesses (Autoimmune)
 - Heredity (G6PD, Thalassemia, Sickle Cell)
Intravascular hemolysis in non-foot strike sports

- Swimmers
 - Compression from contracting muscles
- Cyclists, other sports
 - ? Increase in body temperature may increase red cell turnover
 - oxidative and osmotic stress
Sickle Cell

- Inherited disease of abnormal hemoglobin S
 - Polymerizes under physiologic stress = destruction of rbcs
- Sickle disease – usually incompatible with participation in intense physical activity
- Sickle Trait - Heterozygous state where Hgb S is present with Normal Hgb A in RBC
 - < 50% Hgb is Hgb S
 - Usually Asymptomatic w/ no anemia
 - Up to 8% of African Americans
 - 1/10,000 Whites
Sickle Cell Risks

- Gross hematuria
- Splenic infarction
- Exertional heat illness
 - Rhabdomyolysis
 - Heat stroke
 - Renal failure
- Idiopathic sudden death
- Physiologic changes associated with exercise
 - (Regional hypoxemia, acidosis, dehydration, hyperthermia) – all increase risk of sickling
Sickle Cell Trait

SPLENIC INFARCTION

- Rare in sickle cell trait – 47 reported cases
- Due to microvascular occlusion
- Severe Hypoxia - Elevations > 10,000 feet
- Descend to lower height, O2, hydration
Sickle Cell – Treatment/Prevention

- Train wisely
- Stay hydrated
- Avoid heat and elevation
- Rest when sick
- Report hematuria
- Respect pain – abdominal, muscles, cardiac
Blood Doping
Erythropoietin (EPO)

- Glycoprotein hormone regulating RBC production
- Produced by renal cortex (90%), brain, lung & uterus
- Binds to CFU erythroid stem cells in bone marrow
- EPO regulation controlled by gene on chromosome 7 with hypoxic inducible factor
- New circulating erythrocytes seen 1-2 days after EPO levels rise
Blood Doping

- Increasing the number of red blood cells in the body to increase the oxygen carried to muscle
 - Administration of blood, red blood cells, or related blood products
 - Erythropoietin (EPO) or rHuEPO
 - Stimulates bone marrow to produce red blood cells
Blood Doping

- 1968 Mexico City Olympics (Alt. 7300 ft)
 - Most endurance race winners from highlands
 - Athletes from high altitude had “thick blood”
- Elblom et al (1972)*
 - 3 men, 800ml autologous transfusion (4 weeks)
 - 13% increase in Hg
 - 9% increase in VO2max
 - Run time to exhaustion increase 23%
- 1976 Blood Transfusions Banned by IOC
- 1987 rHuEPO first available in Europe
- 1990 – IOC prohibited use of EPO

Blood Doping - Does It Work?

- **Performance Studies** - (Williams and Branch summarized study findings)
 - 7% increase in Hgb
 - 5% increase in VO2 max
 - 34% increase in time to exhaustion at 95% VO$_2$ max
 - 44 second improvement in 5 mile treadmill run time
Blood Doping - Side Effects

- Infections with transfusions
- Inhibit endogenous EPO production
- Increased viscosity of blood
 - Stroke, MI, venous thromboses, PE
 - HTN (direct relation to dose), CHF
Recombinant Human Erythropoietin (rHuEPO)

- rHuEPO isolated from Chinese hamster ovaries
 - SQ administration, 50-300 u/kg, 2-3/week
 - Hct increases noted after 2-6 weeks

- Clinical Applications:
 - treatment of anemias related to renal failure, chemotherapy, HIV infection, prematurity, hemoglobinopathies, autoimmune disease and malignancy

- Adverse Effects:
 - headache, fever, nausea, anxiety, lethargy
 - hypertension & hyperkalemia in dialysis population
 - hyperviscosity syndromes
 - Seizures and hyperkalemia (rare)
rHuEPO

- 1987-1991, 20 top European cyclists died unexpectedly, suspected EPO use
- 1998-2000, 18 more cyclists with suspected EPO use died of thromboembolic complications (PE, CVA, MI)

Ergogenic Effectiveness*
 - Hct increase from 43% to 51%
 - 7% increase VO2max
 - 9% increase in run time to exhaustion
 - Effects lasted up to 3 weeks after EPO stopped

Detection of rHuEPO Misuse

- 1990 rHuEPO banned by IOC, later USOC & NCAA
- Nearly identical in structure and metabolism to endogenous EPO form, rapid half life (24 hours)
 - Cleared from body within 2-3 days
- 1997 International Cycling Union created Hct cutoffs
 - Males (50%), Females (47%)
- 2000 Mathematical Model
 - measuring indirect blood markers associated with rHuEPO
 - Hb, EPO level, reticulocyte %, soluble transferrin
- 2000 Isoelectric Focusing & Immunoblotting
 - possible to separate rHuEPO and endogenous EPO based on differences in charge status of glycosylated side chains
 - rHuEPO slightly more acidic than EPO
 - Also able to detect Darbopoietin (rHuEPO analogue)
Detection of Blood Transfusion

- Advancement of rHuEPO testing, indirectly leads to a return to older practices of blood transfusion
 - Autologous transfusions currently undetectable
 - Homologous transfusions can be detected by flow cytometry after labeling RBC membrane proteins
 - Multiple RBC populations
 - Enhanced production of RBC line
Additional Blood-Boosting Methods

- **High Altitude Training / Altitude Tents**
 - In low pO2, Hg binds O2 more efficiently
 - Natural stimulus for erythropoiesis, over 3-4 weeks

- **Artificial Oxygen Carriers**
 - Hemoglobin Oxygen Carriers (ex. Hemopure)
 - No positive effect on endurance or VO2max*
 - Hypertension, GI hypertonicity, renal toxicity
 - Perfluorocarbons Emulsions
 - Synthetic liquid dissolves oxygen 100x greater than plasma, requires oxygen supplementation
 - Flu-like symptoms, thrombocytopenia, allergic reactions, hepatosplenomegaly, organ failure

Summary

- **Sports Anemia** – dilutional due to increase plasma volume
 - Rule out other causes
 - No treatment needed

- **Iron Deficiency Anemia**
 - Order appropriate labs
 - Evaluate nutritional intake
 - Evaluate for possible losses including GI, GU
 - Training adaptations

- **Hemolytic Anemia**
 - Order appropriate labs
 - Training adaptations

- **Sickle Cell Trait**
 - Higher risk for sickling crisis with heat, exertion, dehydration, altitude
References