Musculoskeletal Strength and Conditioning

Matthew Gammons, MD
Killington Medical Clinic
Vermont Orthopaedic Clinic
Strength and Conditioning

- Basic Principles
- Cardiovascular
- Muscular development
- Flexibility
- Athletic Development
- Injury prevention
- Pitfalls
Basic Principles

• Physical conditioning helps to improve athletic performance and may decrease some risk of injury
• Strength represents only a small portion of athletic success
 – Strength, speed, agility, cardiovascular, flexibility and sport specific skill all contribute
• Sport specific training based on individual demands is most effective
• Balance of adequate stress and recovery are necessary for success
 – Periodization
 – Load tolerance is very individual
Basic Principles

• Overload/Overreaching
 – short-term overload training that is design to produces the necessary adaptations to improve strength and fitness
 • *Functional overreaching* occurs when such a training load is then paired with an appropriate recovery period, and the athlete fully recovers and ideally is able to perform better.
 • *Non-functional overreaching* occurs when the recovery is inappropriate for the training load such that complete recovery cannot occur.

• Overtraining
 – Complex syndrome defined as
 • a physical, behavioral, and emotional condition that occurs when the volume and intensity of an individual's exercise exceeds their recovery capacity
 – Thought to occur from prolonged periods of non-functional overreaching

• Periodization
 – Plan for training cycles ensuring adequate stress and recovery
 – Linear
 • ↓ Volume with ↑ intensity as athletes progresses to competition
 • Best for when a single performance peak is needed (ie Olympic weightlifting)
 – Non-linear
 • Varies training and volume based on total loads including games
 • Best for multi-game season or multi-sport athletes
Cardiovascular Training

• Aerobic
 – Aerobic capacity – (VO2 max)
 • the maximum amount of oxygen the body can use during a specified period, usually during intense exercise
 – Can be measured or estimated
 • Mainly genetic but can be trained
 – Average 17% but both low and high responders
 • Require intense exercise for weeks to improve
 • Loss ≈ 1% per year
 • Women lower aerobic capacity (average 10%)
Cardiovascular Training

• Aerobic
 – Lactate Threshold
 • Lactate is a byproduct of muscle work (glycolysis)
 – Accumulates with high intensity work
 • Used as muscle fuel as well
 • Easy to measure by exercise testing
 – Directly by blood levels
 – Estimated by HR and/or respiratory rate
 • Indicates ability to maintain % of VO2 max
 • Can be trained
 – Training just below threshold
Cardiovascular Training

• Aerobic
 • Training 3-5 times per week optimizes improvement
 • Improvement varies with fitness level
 • Must be adjusted every few weeks to continue to make improvements
 • Intensity involves both work load and duration
 – Both must be modified to improve and ensure recovery
Cardiovascular Training

• Anaerobic
 • Short maximal intensity efforts
 – Working above aerobic threshold
 • High energy phosphate and anaerobic glycolysis
 • Can only be maintained for short intervals
 • Component of many sporting events but contribution varies
 – Training time should be based on physiological need for the competitive sport
Muscular Development

• Muscle Physiology
 – 2 main responses to resistance training
 • Neuromuscular coordination
 – Initial adaptation
 – Muscle function more efficiently therefore can increase force generation
 • Hypertrophy
 – Muscle fibers increase cross sectional area
 » Takes in general 4-6 weeks to make measurable changes
 – Can be reversed with deconditioning
Muscle Physiology

- **Type 1 Fibers**
 - Slow twitch
 - High endurance

- **Type 2 Fibers**
 - Fast twitch
 - Intermediate to low endurance

- **human muscle is made up of a mixture of type I and type II fibers; muscle fiber type depends not on any intrinsic feature of the fiber itself but on the motor neuron supplying that particular fiber**

Sporting activity requires a combination of both types
Muscular Development

• Resistance Training
 – Improves muscle and bone strength
 – In combination with other training can improve performance
 • Important to note: ↑strength ≠ ↑ performance necessarily
 – Some training may decrease injury risk
Muscular Development

• Resistance Training
 – Important to define goals
 • Overall fitness
 • Improve performance
 • Appearance
 – Functional strength training
 • Increasing strength in a sport and/or movement specific pattern
 • Generally involves whole body lifts with coordination of muscle actions
 • Has potential to improve performance
Resistance Training

• How much, how many how often?
 – How much
 • 30-50% of 1 rep max (RM) for explosive power
 • 70-100% of 1 RM for muscle size increase
 • 1 RM can be directly measured or estimated
 – 1RM = 0.033(reps)x (repetition weight) + repetition weight
 – How many
 • Beginners initially 1 set = multiple sets
 – 1st 4-6 weeks
 • Generally 3-6 sets for experienced athletes
 – How often
 • Beginners will do well with 1-2 x week
 • Elite level athletes may require 4-5 training sessions a week to maintain or improve strength
Flexibility

• Definitions
 – Most commonly refers to range of motion around a joint
 • Joint motion is affected by muscle and ligament
 – Also refers ability of a muscle to elongate

• Static stretch
 – Stretch to a length and hold without movement

• Active/Dynamic stretch
 – Stretch by movement (joint ROM) or by activation of antagonist muscle

• Proprio-neuro-facilitory (PNF)
 – Combination of muscle contraction and passive force
 • Appears to increase stretch tolerance

• Ballistic
 – Moving to end ROM of a joint the relax then return to end ROM using a bouncing technique
Flexibility

• Injury prevention and treatment
 – Both inflexible and highly flexible athletes appear to have increased injury risk
 • No studies to show that improving flexibility of an inflexible athlete with decrease their risk
 – Stretching before exercise does not appear to decrease injury risk
 • Muscle are weaker after stretching? Increased risk
 – Regular stretching
 • Some evidence (minimal) to suggest decreased injury risk
Flexibility

• Performance
 – Acute stretching decreases the muscles ability to generate force and velocity
 – Over weeks stretching will increase muscles ability to generate force
 • ? % contribution to total athletic performance
Athletic Development

• “Athleticism—the ability to express one’s physical self with optimal speed, agility, strength, balance, suppleness, stamina and grace while avoiding injury—is the goal. Strength, as you will note by re-reading the sentence, above, is a single element of the collective term: athleticism. You cannot be athletic without being strong; but you can be strong without being athletic. “

– Steve Myrland CSCS
Athletic Development

• Skill specific strength and training
 – When possible individualized training is best
 – Not all athletes can tolerate the same loads
 • Genetics
 • Injury or previous injury
 • Years of training
 – Understanding the demands of the sport help guide functional training
 • Combines cardiovascular and strength work that mimic demands of the specific sport
Injury prevention

• Data on injury prevention is limited
 – Just being strong doesn’t mean you won’t get hurt
• Generalized strength training does not appear to have an overall effect on injury rates
• Specific injury training has some evidence of protection
 – Eccentric hamstring exercises have been shown to decrease rates of hamstring strain
 – Neuromuscular training may help prevent knee injuries
Pearls and Pitfalls

• Individualized training is better
 – Not always possible so use non-linear training for groups

• To slow, to little, to infrequent can be just as detrimental to a competitive athletes as to much, to fast, to soon.
 – Monitor loads when possible

• Older athletes and children can benefit from training and it is safe
 – Slower gains
 – Neuromuscular control only pre-puberty